Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38476010

RESUMO

The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.

2.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108234

RESUMO

Therapeutic oligonucleotides are powerful tools for the inhibition of potential targets involved in cancer. We describe the effect of two Polypurine Reverse Hoogsteen (PPRH) hairpins directed against the ERBB2 gene, which is overexpressed in positive HER-2 breast tumors. The inhibition of their target was analyzed by cell viability and at the mRNA and protein levels. The combination of these specific PPRHs with trastuzumab was also explored in breast cancer cell lines, both in vitro and in vivo. PPRHs designed against two intronic sequences of the ERBB2 gene decreased the viability of SKBR-3 and MDA-MB-453 breast cancer cells. The decrease in cell viability was associated with a reduction in ERBB2 mRNA and protein levels. In combination with trastuzumab, PPRHs showed a synergic effect in vitro and reduced tumor growth in vivo. These results represent the preclinical proof of concept of PPRHs as a therapeutic tool for breast cancer.


Assuntos
Neoplasias da Mama , Genes erbB-2 , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/genética , Oncogenes , Células MCF-7 , RNA Mensageiro/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor ErbB-2/genética
4.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192545

RESUMO

The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment. OSM receptor (OSMR) deletion in a multistage breast cancer model halted tumor progression. We ascribed causality to the stromal function of the OSM axis by demonstrating reduced tumor burden of syngeneic tumors implanted in mice lacking OSMR. Single-cell and bioinformatic analysis of murine and human breast tumors revealed that OSM expression was restricted to myeloid cells, whereas OSMR was detected predominantly in fibroblasts and, to a lower extent, cancer cells. Myeloid-derived OSM reprogrammed fibroblasts to a more contractile and tumorigenic phenotype and elicited the secretion of VEGF and proinflammatory chemokines CXCL1 and CXCL16, leading to increased myeloid cell recruitment. Collectively, our data support the notion that the stromal OSM/OSMR axis reprograms the immune and nonimmune microenvironment and plays a key role in breast cancer progression.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Oncostatina M/genética , Oncostatina M/metabolismo , Transdução de Sinais
5.
Cancers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201840

RESUMO

Breast cancer (BrCa) is the leading cause of death among women worldwide, with about one million new cases diagnosed each year. In spite of the improvements in diagnosis, early detection and treatment, there is still a high incidence of mortality and failure to respond to current therapies. With the use of several well-established biomarkers, such as hormone receptors and human epidermal growth factor receptor-2 (HER2), as well as genetic analysis, BrCa patients can be categorized into multiple subgroups: Luminal A, Luminal B, HER2-enriched, and Basal-like, with specific treatment strategies. Although chemotherapy and targeted therapies have greatly improved the survival of patients with BrCa, there is still a large number of patients who relapse or who fail to respond. The role of the tumor microenvironment in BrCa progression is becoming increasingly understood. Cancer-associated fibroblasts (CAFs) are the principal population of stromal cells in breast tumors. In this review, we discuss the current understanding of CAFs' role in altering the tumor response to therapeutic agents as well as in fostering metastasis in BrCa. In addition, we also review the available CAFs-directed molecular therapies and their potential implications for BrCa management.

7.
J Clin Med ; 9(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178425

RESUMO

Current evidences state clear that both normal development of breast tissue as well as its malignant progression need many-sided local and systemic communications between epithelial cells and stromal components. During development, the stroma, through remarkably regulated contextual signals, affects the fate of the different mammary cells regarding their specification and differentiation. Likewise, the stroma can generate tumour environments that facilitate the neoplastic growth of the breast carcinoma. Mammographic density has been described as a risk factor in the development of breast cancer and is ascribed to modifications in the composition of breast tissue, including both stromal and glandular compartments. Thus, stroma composition can dramatically affect the progression of breast cancer but also its early detection since it is mainly responsible for the differences in mammographic density among individuals. This review highlights both the pathological and biological evidences for a pivotal role of the breast stroma in mammographic density, with particular emphasis on dense and malignant stromas, their clinical meaning and potential therapeutic implications for breast cancer patients.

8.
Int J Cancer ; 147(4): 1163-1179, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31943158

RESUMO

Around 40% of newly diagnosed lung cancer patients are Stage IV, where the improvement of survival and reduction of disease-related adverse events is the main goal for oncologists. In this scenario, we present preclinical evidence supporting the use of ABTL0812 in combination with chemotherapy for treating advanced and metastatic Nonsmall cell lung adenocarcinomas (NSCLC) and squamous carcinomas. ABTL0812 is a new chemical entity, currently in Phase 1b/2a clinical trial for advanced squamous NSCLC in combination with paclitaxel and carboplatin (P/C), after successfully completing the first-in-human trial where it showed an excellent safety profile and signs of efficacy. We show here that ABTL0812 inhibits Akt/mTOR axis by inducing the overexpression of TRIB3 and activating autophagy in lung squamous carcinoma cell lines. Furthermore, treatment with ABTL0812 also induces AMPK activation and ROS accumulation. Moreover, combination of ABTL0812 with chemotherapy markedly increases the therapeutic effect of chemotherapy without increasing toxicity. We further show that combination of ABTL0812 and chemotherapy induces nonapoptotic cell death mediated by TRIB3 activation and autophagy induction. We also present preliminary clinical data indicating that TRIB3 could serve as a potential novel pharmacodynamic biomarker to monitor ABTL0812 activity administered alone or in combination with chemotherapy in squamous NSCLC patients. The safety profile of ABTL0812 and its good synergy with chemotherapy potentiate the therapeutic potential of current lines of treatment based on chemotherapy regimens, arising as a promising option for improving these patients therapeutic expectancy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Clin Cancer Res ; 26(6): 1432-1448, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699826

RESUMO

PURPOSE: Despite the therapeutic success of existing HER2-targeted therapies, tumors invariably relapse. This study aimed at identifying new mechanisms responsible for HER2-targeted therapy resistance. EXPERIMENTAL DESIGN: We have used a platform of HER2-targeted therapy-resistant cell lines and primary cultures of healthy and tumor-associated fibroblasts (TAF) to identify new potential targets related to tumor escape from anti-HER2 therapies. RESULTS: We have shown that TAFs promote resistance to HER2-targeted therapies. TAFs produce and secrete high levels of FGF5, which induces FGFR2 activation in the surrounding breast cancer cells. FGFR2 transactivates HER2 via c-Src, leading to resistance to HER2-targeted therapies. In vivo, coinoculating nonresistant cell lines with TAFs results in more aggressive and resistant tumors. Resistant cells activate fibroblasts and secrete FGFR ligands, creating a positive feedback loop that fuels resistance. FGFR2 inhibition not only inhibits HER2 activation, but also induces apoptosis in cells resistant to HER2-targeted therapies. In vivo, inhibitors of FGFR2 reverse resistance and resensitize resistant cells to HER2-targeted therapies. In HER2 patients' samples, α-SMA, FGF5, and FGFR2 contribute to poor outcome and correlate with c-Src activation. Importantly, expression of FGF5 and phospho-HER2 correlated with a reduced pathologic complete response rate in patients with HER2-positive breast cancer treated with neoadjuvant trastuzumab, which highlights the significant role of TAFs/FGF5 in HER2 breast cancer progression and resistance. CONCLUSIONS: We have identified the TAF/FGF5/FGFR2/c-Src/HER2 axis as an escape pathway responsible for HER2-targeted therapy resistance in breast cancer, which can be reversed by FGFR inhibitors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fibroblastos Associados a Câncer/patologia , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Lapatinib/administração & dosagem , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Receptor ErbB-2/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Trastuzumab/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Breast Cancer Res ; 20(1): 65, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973218

RESUMO

BACKGROUND: The microenvironment and stress factors like glucocorticoids have a strong influence on breast cancer progression but their role in the first stages of breast cancer and, particularly, in myoepithelial cell regulation remains unclear. Consequently, we investigated the role of glucocorticoids in ductal carcinoma in situ (DCIS) in breast cancer, focusing specially on myoepithelial cells. METHODS: To clarify the role of glucocorticoids at breast cancer onset, we evaluated the effects of cortisol and corticosterone on epithelial and myoepithelial cells using 2D and 3D in vitro and in vivo approaches and human samples. RESULTS: Glucocorticoids induce a reduction in laminin levels and favour the disruption of the basement membrane by promotion of myoepithelial cell apoptosis in vitro. In an in vivo stress murine model, increased corticosterone levels fostered the transition from DCIS to invasive ductal carcinoma (IDC) via myoepithelial cell apoptosis and disappearance of the basement membrane. RU486 is able to partially block the effects of cortisol in vitro and in vivo. We found that myoepithelial cell apoptosis is more frequent in patients with DCIS+IDC than in patients with DCIS. CONCLUSIONS: Our findings show that physiological stress, through increased glucocorticoid blood levels, promotes the transition from DCIS to IDC, particularly by inducing myoepithelial cell apoptosis. Since this would be a prerequisite for invasive features in patients with DCIS breast cancer, its clinical management could help to prevent breast cancer progression to IDC.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Ductal de Mama/sangue , Carcinoma Intraductal não Infiltrante/sangue , Glucocorticoides/sangue , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Laminina/genética , Camundongos , Mioepitelioma/sangue , Mioepitelioma/genética , Mioepitelioma/patologia , Microambiente Tumoral/genética
11.
Cancer Lett ; 424: 70-83, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29548821

RESUMO

Histamine receptor 1 (HRH1) belongs to the rhodopsin-like G-protein-coupled receptor family. Its activation by histamine triggers cell proliferation, embryonic development, and tumor growth. We recently established that HRH1 is up-regulated in basal and human epidermal growth factor receptor 2 (HER2)-enriched human breast tumors and that its expression correlates with a worse prognosis. Nevertheless, the functional role of HRH1 in basal and HER2-targeted therapy-resistant breast cancer (BC) progression has not yet been addressed. Using terfenadine, a selective chemical inhibitor of HRH1, we showed that the inhibition of HRH1 activity in basal BC cells leads to sub-G0 cell accumulation, suppresses proliferation, promotes cell motility and triggers the activation of extracellular signal-regulated kinase (ERK) signaling, initiating the mitochondrial apoptotic pathway. Furthermore, HER2-targeted therapy-resistant cells express higher levels of HRH1 and are more sensitive to terfenadine treatment. Moreover, in vivo experiments showed that terfenadine therapy reduced the tumor growth of basal and trastuzumab-resistant BC cells. In conclusion, our results suggest that targeting HRH1 is a promising new clinical approach to consider that could enhance the effectiveness of current therapeutic treatment in patients with basal and BC tumors resistant to HER2-targeted therapies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas não Sedativos dos Receptores H1 da Histamina/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Terfenadina/administração & dosagem , Trastuzumab/administração & dosagem , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Humanos , Células MCF-7 , Camundongos , Neoplasia de Células Basais/tratamento farmacológico , Neoplasia de Células Basais/metabolismo , Receptor ErbB-2/metabolismo , Terfenadina/farmacologia , Trastuzumab/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Cancer Res ; 22(10): 2508-19, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671995

RESUMO

PURPOSE: ABTL0812 is a novel first-in-class, small molecule which showed antiproliferative effect on tumor cells in phenotypic assays. Here we describe the mechanism of action of this antitumor drug, which is currently in clinical development. EXPERIMENTAL DESIGN: We investigated the effect of ABTL0812 on cancer cell death, proliferation, and modulation of intracellular signaling pathways, using human lung (A549) and pancreatic (MiaPaCa-2) cancer cells and tumor xenografts. To identify cellular targets, we performed in silico high-throughput screening comparing ABTL0812 chemical structure against ChEMBL15 database. RESULTS: ABTL0812 inhibited Akt/mTORC1 axis, resulting in impaired cancer cell proliferation and autophagy-mediated cell death. In silico screening led us to identify PPARs, PPARα and PPARγ as the cellular targets of ABTL0812. We showed that ABTL0812 activates both PPAR receptors, resulting in upregulation of Tribbles-3 pseudokinase (TRIB3) gene expression. Upregulated TRIB3 binds cellular Akt, preventing its activation by upstream kinases, resulting in Akt inhibition and suppression of the Akt/mTORC1 axis. Pharmacologic inhibition of PPARα/γ or TRIB3 silencing prevented ABTL0812-induced cell death. ABTL0812 treatment induced Akt inhibition in cancer cells, tumor xenografts, and peripheral blood mononuclear cells from patients enrolled in phase I/Ib first-in-human clinical trial. CONCLUSIONS: ABTL0812 has a unique and novel mechanism of action, that defines a new and drugable cellular route that links PPARs to Akt/mTORC1 axis, where TRIB3 pseudokinase plays a central role. Activation of this route (PPARα/γ-TRIB3-Akt-mTORC1) leads to autophagy-mediated cancer cell death. Given the low toxicity and high tolerability of ABTL0812, our results support further development of ABTL0812 as a promising anticancer therapy. Clin Cancer Res; 22(10); 2508-19. ©2015 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Ratos , Transdução de Sinais/efeitos dos fármacos
13.
Oncotarget ; 7(5): 5313-26, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26673618

RESUMO

The nervous system is now recognized to be a relevant component of the tumor microenvironment. Receptors for neuropeptides and neurotransmitters have been identified in breast cancer. However, very little is known about the role of neurogenes in regulating breast cancer progression. Our purpose was to identify neurogenes associated with breast cancer tumorigenesis with a potential to be used as biomarker and/or targets for treatment. We used three databases of human genes: GeneGo, GeneCards and Eugenes to generate a list of 1266 relevant neurogenes. Then we used bioinformatics tools to interrogate two published breast cancer databases SAGE and MicMa (n=96) and generated a list of 7 neurogenes that are differentially express among breast cancer subtypes. The clinical potential was further investigated using the GOBO database (n=1881). We identified 6 neurogenes that are differentially expressed among breast cancer subtypes and whose expression correlates with prognosis. Histamine receptor1 (HRH1), neuropilin2 (NRP2), ephrin-B1 (EFNB1), neural growth factor receptor (NGFR) and amyloid precursor protein (APP) were differentially overexpressed in basal and HER2-enriched tumor samples and syntaxin 1A (STX1A) was overexpressed in HER2-enriched and luminal B tumors. Analysis of HRH1, NRP2, and STX1A expression using the GOBO database showed that their expression significantly correlated with a shorter overall survival (p < 0.0001) and distant metastasis-free survival (p < 0.0001). In contrast, elevated co-expression of NGFR, EFNB1 and APP was associated with longer overall (p < 0.0001) and metastasis-free survival (p < 0.0001). We propose that HRH1, NRP2, and STX1A can be used as prognostic biomarkers and therapeutic targets for basal and HER2-enriched breast cancer subtypes.


Assuntos
Neoplasias da Mama/genética , Neurogênese/genética , Neuropeptídeos/genética , Feminino , Expressão Gênica/genética , Humanos , Prognóstico , Fatores de Risco , Microambiente Tumoral
14.
Cancer Res ; 73(21): 6424-34, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24030979

RESUMO

ERBB receptor transmodulation by heterologous G-protein-coupled receptors (GPCR) generates functional diversity in signal transduction. Tachykinins are neuropeptides and proinflammatory cytokines that promote cell survival and cancer progression by activating several GPCRs. In this work, we found that the pain-associated tachykinin Substance P (SP) contributes to persistent transmodulation of the ERBB receptors, EGFR and HER2, in breast cancer, acting to enhance malignancy and therapeutic resistance. SP and its high-affinity receptor NK-1R were highly expressed in HER2(+) primary breast tumors (relative to the luminal and triple-negative subtypes) and were overall correlated with poor prognosis factors. In breast cancer cell lines and primary cultures derived from breast cancer samples, we found that SP could activate HER2. Conversely, RNA interference-mediated attenuation of NK-1R, or its chemical inhibition, or suppression of overall GPCR-mediated signaling, all strongly decreased steady-state expression of EGFR and HER2, establishing that their basal activity relied upon transdirectional activation by GPCR. Thus, SP exposure affected cellular responses to anti-ERBB therapies. Our work reveals an important oncogenic cooperation between NK-1R and HER2, thereby adding a novel link between inflammation and cancer progression that may be targetable by SP antagonists that have been clinically explored.


Assuntos
Comunicação Autócrina/efeitos dos fármacos , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Substância P/farmacologia , Apoptose , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Progressão da Doença , Receptores ErbB/metabolismo , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurotransmissores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Receptores da Neurocinina-1/química , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
15.
J Cell Physiol ; 227(4): 1358-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21604273

RESUMO

NK1 is a tachykinin receptor highly relevant to tumorigenesis and metastasis development in breast cancer and other carcinomas. Despite the substantial efforts done to develop potent NK1 receptor antagonists, none of these antagonists had shown good antitumor activity in clinical trials. Now, we have tested the effect of inhibition of the neuropeptide Substance P (SP), a NK1 ligand, as a potential therapeutic approach in cancer. We found that the inhibition of SP with antibodies strongly inhibit cell growth and induce apoptosis in breast, colon, and prostate cancer cell lines. These effects were accompained by a decrease in the mitogen-activated kinase singaling pathway. Interestingly, in some cell lines SP abrogation decreased the steady state of Her2 and EGFR, suggesting that SP-mediated signaling is important for the basal activity of these ErbB receptors. In consequence, we observed a blockade of the cell cycle progression and the inhibition of several cell cycle-related proteins including mTOR. SP inhibition also induced cell death in cell lines resistant to Lapatinib and Trastuzumab that have increased levels of active Her2, suggesting that this therapeutic approach could be also effective for those cancers resistant to current anti-ErbB therapies. Thus, we propose a new therapeutic strategy for those cancers that express NK1 receptor and/or other tachykinin receptors, based in the immuno-blockade of the neuropeptide SP.


Assuntos
Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Substância P/antagonistas & inibidores , Anticorpos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lapatinib , Ligantes , Masculino , Neoplasias/patologia , Antagonistas dos Receptores de Neurocinina-1 , Piperidinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Quinazolinas/farmacologia , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância P/imunologia , Trastuzumab
16.
Mol Cancer ; 9: 161, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20573240

RESUMO

BACKGROUND: CD95 is a death receptor controlling not only apoptotic pathways but also activating mechanisms promoting tumor growth. During the acquisition of chemoresistance to oxaliplatin there is a progressive loss of CD95 expression in colon cancer cells and a decreased ability of this receptor to induce cell death. The aim of this study was to characterize some key cellular responses controlled by CD95 signaling in oxaliplatin-resistant colon cancer cells. RESULTS: We show that CD95 triggering results in an increased metastatic ability in resistant cells. Moreover, oxaliplatin treatment itself stimulates cell migration and decreases cell adhesion through CD95 activation, since CD95 expression inhibition by siRNA blocks the promigratory effects of oxaliplatin. These promigratory effects are related to the epithelia-to-mesenchymal transition (EMT) phenomenon, as evidenced by the up-regulation of some transcription factors and mesenchymal markers both in vitro and in vivo. CONCLUSIONS: We conclude that oxaliplatin treatment in cells that have acquired resistance to oxaliplatin-induced apoptosis results in tumor-promoting effects through the activation of CD95 signaling and by inducing EMT, all these events jointly contributing to a metastatic phenotype.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Receptor fas/metabolismo , Antineoplásicos/farmacologia , Sequência de Bases , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Citometria de Fluxo , Imunofluorescência , Humanos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Reação em Cadeia da Polimerase , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...